Restrictions on endomorphism algebras of abelian varieties

Pip Goodman

27th April 2022

Why might we expect restrictions on $\operatorname{End}(A)$ from the G_{K}-modules $A[\ell]$?

Theorem (Faltings' sogeny Theorem)

The natural map

```
End}\mp@subsup{K}{K}{}(A)\otimes\mp@subsup{\mathbb{Z}}{\ell}{}->\operatorname{End}(\mp@subsup{T}{\ell}{}(A)\mp@subsup{)}{}{G}\mp@subsup{G}{K}{
```


is an isomorphism.

Thus given the action of G_{K} on $A[\ell]$ one should not expect to say any more than End $_{K}(A) \otimes \mathbb{Z}_{\ell}$. In fact, in general, $A[\ell]$ doesn't tell us much about End (A).

Why might we expect restrictions on $\operatorname{End}(A)$ from the G_{K}-modules $A[\ell]$?

Theorem (Faltings' Isogeny Theorem)

The natural map

$$
\operatorname{End}_{K}(A) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{End}\left(T_{\ell}(A)\right)^{G_{K}}
$$

is an isomorphism.
Thus given the action of G_{K} on $A[\ell]$ one should not expect to say any more than $\operatorname{End}_{K}(A) \otimes \mathbb{Z}_{\ell}$. In fact, in general, $A[\ell]$ doesn't tell us much about End (A).

Why might we expect restrictions on $\operatorname{End}(A)$ from the G_{K}-modules $A[\ell]$?

Theorem (Faltings' Isogeny Theorem)

The natural map

$$
\operatorname{End}_{K}(A) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{End}\left(T_{\ell}(A)\right)^{G_{K}}
$$

is an isomorphism.
Thus given the action of G_{K} on $A[\ell]$ one should not expect to say any more than $\operatorname{End}_{K}(A) \otimes \mathbb{Z}_{\ell}$. In fact, in general, $A[\ell]$ doesn't tell us much about $\operatorname{End}(A)$.

Example

1 $f(x)=(x+1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$, has $\operatorname{End}^{0}\left(J_{f}\right) \cong \mathbb{Q}$.
[2 $f(x)=x\left(x^{4}+x^{3}+x^{2}+x+1\right)$, has $\operatorname{End}^{0}\left(J_{f}\right) \cong \mathbb{Q} \times \mathbb{Q}$.
उ $f(x)=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$, has $\operatorname{End}^{0}\left(J_{f}\right) \cong \mathbb{Q}\left(\zeta_{5}\right)$.

Links to Inverse Galois Theory

Theorem (Serre '72)

Let E / K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes ℓ, we have $\operatorname{Gal}(K(E[\ell]) / K) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Theorem (Hall '08)

Let $f(x) \in K[x]$ be a squareefree polynomial of degree $2 g+1$. Suppose
$\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}$, and modulo some prime q, f has a root of multiplicity two. Then for all but finitely many primes ℓ, we have $\operatorname{Gal}\left(K\left(J_{f}[\ell]\right) / K\right) \cong \mathrm{GSp}_{2 g}\left(\mathbb{F}_{\ell}\right)$.

Theorem (Zarhin '00)

Let $f \in K\lceil x]$ be a polvnomial of degree $n \geq 5$ with Galois group containing A_{n}. Then
J_{f} has trivial endomorphism ring.

Remark

To nrove th is result, it suffices to prove it for A

Links to Inverse Galois Theory

Theorem (Serre '72)

Let E / K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes ℓ, we have $\operatorname{Gal}(K(E[\ell]) / K) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Theorem (Hall '08)

Let $f(x) \in K[x]$ be a squareefree polynomial of degree $2 g+1$. Suppose
$\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}$, and modulo some prime q, f has a root of multiplicity two. Then for all but finitely many primes ℓ, we have $\operatorname{Gal}\left(K\left(J_{f}[\ell]\right) / K\right) \cong \mathrm{GSp}_{2 g}\left(\mathbb{F}_{\ell}\right)$.

Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \geq 5$ with Galois group containing A_{n}. Then J_{f} has trivial endomorphism ring.

Remark

To prove this result, it suffices to prove it for A_{n}.

Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \geq 5$ with Galois group containing A_{n}. Then J_{f} has trivial endomorphism ring.

For a rough outline of the proof, we'll need the following properties of $\operatorname{End}(A)$:
$\square \operatorname{End}(A)$ is a free \mathbb{Z}-module of rank $<4 g^{2}$.

- G_{K} acts on $\operatorname{End}(A)$ by conjugation.
$■ \operatorname{End}(A) \otimes \mathbb{Z} / 2 \mathbb{Z}$ may be viewed as a subalgebra of $\operatorname{End}(A[2])$.

What can we say for smaller Galois groups?

Zarhin has done a lot of work on this for large insoluble Galois groups. For example, we have the following :

Theorem (Elkin, Zarhin '06,'08)
Suppose $n=q+1$, where $q \geq 5$ is a prime power congruent to ± 3 or 7 modulo 8 . Suppose that $f(x) \in K[x]$ is irreducible, has degree n and $\operatorname{Gal}(f) \cong \operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$. Then one of the following holds :
$1 \operatorname{End}^{0}\left(J_{f}\right)=\mathbb{Q}$ or a quadratic field.
〔 $q \equiv 3 \bmod 4$ and $\operatorname{End}^{0}\left(J_{f}\right) \cong M_{g}(\mathbb{Q}(\sqrt{-q}))$.

A result of Lombardo

Theorem (Lombardo '19)
Let $f \in K[x]$ be an irreducible degree 5 polynomial. Then $\operatorname{End}^{0}\left(J_{f}\right)$ is a division algebra.

Improvements in genus 2

Theorem (G. '21)

Let $f(x) \in K[x]$ be a polynomial of degree 5 or 6 , with $\operatorname{Gal}(f)$ containing an element of order 5. Then one of the following holds :
$1 \operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}$.
〔 $\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}\left[\frac{1+r \sqrt{D}}{2}\right]$, where $D \equiv 5 \bmod 8, D>0$ and $2 \nmid r$.
$3 \operatorname{End}\left(J_{f}\right) \cong R$, where R is a 2-maximal order in a degree 4 CM field, which is totally inert at 2.

Remark

Specifying $\operatorname{Gal}(f)$, we can give more information on $\operatorname{End}\left(J_{f}\right)$.

Higher genus

Theorem (G.'21)

Let A / K be an abelian variety of dimension g, with $\mathrm{Gal}(K(A[\ell] / K)$ containing an element of prime order $p=2 g+1$, and g satisfying some additional conditions. Then one of the following holds :
$1 \operatorname{End}^{0}(A)$ is a number field, with restrictions on the primes above ℓ;
2. $\operatorname{End}^{0}(A) \cong M_{a}(F)$ where $F \subsetneq \mathbb{Q}\left(\zeta_{p}\right)$ is a $C M$ field and $a=\frac{2 g}{[F: \mathbb{Q}]}$.

Satisfied by $g=1,2,3,5,6,9,11,14,18,23,26,29,30,33,35,39,41, \ldots$

Restrictions on the endomorphism field

Definition (Endomorphism field)

Let A / K be an abelian variety of dimension g. Denote by L / K the minimal extension over which all endomorphisms of A are defined.
E.g. $E: y^{2}=x^{3}-2$ has $g=1$ and $L=\mathbb{Q}\left(\zeta_{3}\right)$.

Theorem (G.'21)
Suppose $p=2 g+1$ is a prime divisor of $[L: K]$. Then $\operatorname{End}^{0}(A) \cong M_{a}(F)$ where $F \subsetneq \mathbb{Q}\left(\zeta_{p}\right)$ is a CM field and $a=\frac{2 g}{[F: \mathbb{Q}]}$.

Sketch of the proof

Proof sketch

1 First prove $A \sim B^{n}$ over \bar{K} for some absolutely simple abelian variety B and an integer $n>1$.
2 Then observe that $\operatorname{Gal}(L / K)$ acts faithfully on $\operatorname{End}^{0}\left(B^{n}\right) \cong M_{n}(D)$ by automorphisms, where $D \cong \operatorname{End}^{0}(B)$ is a finite dimensional division algebra (over \mathbb{Q}) satisfying $[D: \mathbb{Q}] n \leq 2 g=p-1$.
3 The Skolem-Noether Theorem then tells us we have a faithful representation

$$
\rho: \operatorname{Gal}(L / K) \rightarrow \mathrm{PGL}_{n}(D)
$$

4 This restricts D to be a subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ and $[D: \mathbb{Q}] n=p-1$. Which in turn implies B has CM by a proper subfield of $\mathbb{Q}\left(\zeta_{p}\right)$.

What do the examples say?

Example

Jacobians with trivial endomorphism rings are quite common, so let's see some non trivial examples.

$\operatorname{Gal}(f)$	$\operatorname{End}\left(J_{f}\right)$	$f(x)$
F_{5}	$\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$	$x^{5}+10 x^{3}+20 x+5$
F_{5}	$\mathbb{Z}\left[\zeta_{5}\right]$	$x^{5}-2$

> where R is the maximal order of the CM number field with defining polynomial $x^{4}+x^{3}+2 x^{2}-4 x+3$. We note that this field is cyclic, ramified only at 13 , and 2 generates a maximal ideal.

Note also, when $\operatorname{Gal}(f) \cong F_{5}$ and J_{f} is of CM type, $\operatorname{End}^{0}\left(J_{f}\right)$ is isomorphic to the unique degree 4 extension of \mathbb{Q} contained in $\mathbb{Q}(f)$.

What do the examples say?

Example

Jacobians with trivial endomorphism rings are quite common, so let's see some non trivial examples.

$\operatorname{Gal}(f)$	$\operatorname{End}\left(J_{f}\right)$	$f(x)$
F_{5}	$\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$	$x^{5}+10 x^{3}+20 x+5$
F_{5}	$\mathbb{Z}\left[\zeta_{5}\right]$	$x^{5}-2$
D_{5}	$\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$	$x^{5}-19 x^{4}+107 x^{3}+95 x^{2}+88 x-16$
F_{5}	R	$52 x^{5}+104 x^{4}+104 x^{3}+52 x^{2}+12 x+1$

where R is the maximal order of the CM number field with defining polynomial $x^{4}+x^{3}+2 x^{2}-4 x+3$. We note that this field is cyclic, ramified only at 13 , and 2 generates a maximal ideal.

Note also, when $\operatorname{Gal}(f) \cong F_{5}$ and J_{f} is of CM type, $\operatorname{End}^{0}\left(J_{f}\right)$ is isomorphic to the unique degree 4 extension of \mathbb{Q} contained in $\mathbb{Q}(f)$.

Missing examples

Example

For A / \mathbb{Q} of dimension two and $\operatorname{Gal}(\mathbb{Q}(A[2]) / \mathbb{Q}) \supseteq C_{5}$ soluble, we have the following table :

	\mathbb{Z}	RM	CM
F_{5}	\checkmark	\checkmark	\checkmark
D_{5}	\checkmark	\checkmark	$?$
C_{5}	\checkmark	$?$	$?$

Missing examples

Example

For A / \mathbb{Q} of dimension two and $\operatorname{Gal}(\mathbb{Q}(A[2]) / \mathbb{Q}) \supseteq C_{5}$ soluble, we have the following table :

	\mathbb{Z}	RM	CM
F_{5}	\checkmark	\checkmark	\checkmark
D_{5}	\checkmark	\checkmark	?
C_{5}	\checkmark	?	?

Ruling out the CM cases

Suppose A has CM. Then CM theory tells us that $\operatorname{Gal}(L / \mathbb{Q}) \cong C_{4}$.
We now look to understand $L \cap \mathbb{Q}(A[2])$.
A theorem of Silverberg tells us that $L \subseteq \mathbb{Q}(A[m])$ for $m \geq 3$.
This rules out the C_{5} case.

A specialisation of Silverberg's theorem for A[2]

The $D_{5} \mathrm{CM}$ case is ruled out by the following :

Theorem (G.'22)

Suppose $E=\operatorname{End}^{0}(A)$ is a (finite) Galois extension of \mathbb{Q} and $L \nsubseteq K(A[2])$. The following hold :
$\square \operatorname{Gal}(E / \mathbb{Q})$ has a non-trivial normal elementary abelian 2-subgroup;

- if $\operatorname{End}(A)$ is 2-maximal in E, then 2 is wildly ramified in E / \mathbb{Q}.

In particular, if E / \mathbb{Q} is Galois, $\operatorname{End}(A)$ is a 2-maximal order and 2 is not wildly ramified, then $L \subseteq K(A[2])$.

Corollary (G.'22)

Let A : $y^{2}=f(x)$ be an elliptic curve defined over a number field with a real embedding. If $\operatorname{Gal}(f) \cong C_{3}$, then $\operatorname{End}(A) \cong \mathbb{Z}$.

Example (Silverman II)

The condition that $\operatorname{End}(A)$ is 2-maximal cannot be removed. Indeed, the elliptic curve $y^{2}=(x+2)\left(x^{2}-2 x-11\right)$ has CM by $\mathbb{Z}[\sqrt{-3}]$ and its 2-torsion field is $\mathbb{Q}(\sqrt{3})$. Likewise $y^{2}=x^{3}-x=x(x-1)(x+1)$ has CM by $\mathbb{Z}[i]$ and shows we can't remove the wild ramification condition.

Theorem (G.'22)

Let A / \mathbb{Q} be an abelian variety of dimension $g \geq 1$ with $p=2 g+1$ prime. Suppose $\operatorname{Gal}(\mathbb{Q}(A[2]) / \mathbb{Q}) \cong C_{p}$. Then either

- $\operatorname{End}^{0}(A) \subsetneq \mathbb{Q}\left(\zeta_{p}\right)$; or

■ $p \in\{7,11,19,43,67,163\}$ and $\operatorname{End}^{0}(A) \cong M_{g}(\mathbb{Q}(\sqrt{-p}))$.
In particular there are only finitely many possibilities for $\operatorname{End}^{0}(A)$.

Corollary (G.22)
Let A / \mathbb{Q} be an abelian surface. Suppose $\operatorname{Gal}(\mathbb{Q}(A[2]) / \mathbb{Q}) \cong C_{5}$. Then either $\operatorname{End}(A)=\mathbb{Z}$ or $\operatorname{End}_{\mathbb{Q}}^{0}(A)=\operatorname{End}^{0}(A)=\mathbb{Q}(\sqrt{5})$.

Theorem (G.22)

Let A / \mathbb{Q} be an abelian variety of dimension $g \geq 1$ with $p=2 g+1$ prime. Suppose $\operatorname{Gal}(\mathbb{Q}(A[2]) / \mathbb{Q}) \cong C_{p}$. Then either

- $\operatorname{End}^{0}(A) \subsetneq \mathbb{Q}\left(\zeta_{p}\right)$; or
- $p \in\{7,11,19,43,67,163\}$ and $\operatorname{End}^{0}(A) \cong M_{g}(\mathbb{Q}(\sqrt{-p}))$.

In particular there are only finitely many possibilities for $\operatorname{End}^{0}(A)$.

Corollary (G.22)
Let A / \mathbb{Q} be an abelian surface. Suppose $\operatorname{Gal}(\mathbb{Q}(A[2]) / \mathbb{Q}) \cong C_{5}$. Then either $\operatorname{End}(A)=\mathbb{Z}$ or $\operatorname{End}_{\mathbb{Q}}^{0}(A)=\operatorname{End}^{0}(A)=\mathbb{Q}(\sqrt{5})$.

Example (Wilson '00)

For $f(x)=x\left(x^{5}-4 x^{4}+2 x^{3}+5 x^{2}-2 x-1\right)$ has $\operatorname{End}_{\mathbb{Q}}\left(J_{f}\right)=\operatorname{End}\left(J_{f}\right) \cong \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ and $\operatorname{Gal}(f) \cong C_{5}$.

Sketch of the proof

Let $E=\operatorname{End}_{\mathbb{Q}}^{0}(A)$. Recall $\operatorname{Gal}(\mathbb{Q}(A[2]) / \mathbb{Q}) \cong C_{p}$.

- By Class Field Theory $\mathbb{Q}(A[2]) / \mathbb{Q}$ is ramified at some odd prime q (for example by Kronecker-Weber and $\left.\left[\mathbb{Q}\left(\zeta_{2^{n}}\right): \mathbb{Q}\right]=2^{n-1}\right)$.
- Néron-Ogg-Shafarevich tells us the image of I_{q} on $T_{\ell}(A)$ for any ℓ contains an element of order p.
- Take a suitable ℓ satisfying $\langle\ell\rangle=\mathbb{Z} / p \mathbb{Z}^{*}$ and apply our earlier theorem.
\square We find E is a field.
$\square E \otimes \mathbb{Q}_{\ell}=\prod_{\lambda \mid \ell} E_{\lambda}$ induces a $G_{\mathbb{Q}}$-equivariant splitting $V_{\ell}=\prod_{\lambda \mid \ell} V_{\lambda}$.
- Each V_{λ} has E_{λ} dimension $\frac{2 g}{[E: \mathbb{Q}]}$.
- For λ outside a finite set, consider the action of I_{q} on V_{λ}, and take the trace of our element of order p.
- This gives $\left[\mathbb{Q}\left(\zeta_{p}\right) \cap E: \mathbb{Q}\right]=[E: \mathbb{Q}]$ and hence $E \subseteq \mathbb{Q}\left(\zeta_{p}\right)$.
- The rest follows from a close study of the endomorphism field L / \mathbb{Q}.

Thanks for listening !

