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Why might we expect restrictions on End(A) from the GK -modules A[ℓ]?

Theorem (Faltings’ Isogeny Theorem)

The natural map
EndK(A)⊗ Zℓ → End(Tℓ(A))GK

is an isomorphism.

Thus given the action of GK on A[ℓ] one should not expect to say any more than
EndK(A)⊗ Zℓ. In fact, in general, A[ℓ] doesn’t tell us much about End(A).

Example

1 f(x) = (x+ 1)(x4 + x3 + x2 + x+ 1), has End0(Jf ) ∼= Q.

2 f(x) = x(x4 + x3 + x2 + x+ 1), has End0(Jf ) ∼= Q× Q.

3 f(x) = (x− 1)(x4 + x3 + x2 + x+ 1), has End0(Jf ) ∼= Q(ζ5).
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Links to Inverse Galois Theory

Theorem (Serre ’72)

Let E/K be an elliptic curve with End(E) ∼= Z. Then for all but finitely many primes ℓ,
we have Gal(K(E[ℓ])/K) ∼= GL2(Fℓ).

Theorem (Hall ’08)

Let f(x) ∈ K[x] be a squareefree polynomial of degree 2g + 1. Suppose
End(Jf ) ∼= Z, and modulo some prime q, f has a root of multiplicity two. Then for all
but finitely many primes ℓ, we have Gal(K(Jf [ℓ])/K) ∼= GSp2g(Fℓ).

Theorem (Zarhin ’00)

Let f ∈ K[x] be a polynomial of degree n ≥ 5 with Galois group containing An. Then
Jf has trivial endomorphism ring.

Remark
To prove this result, it suffices to prove it for An.
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Theorem (Zarhin ’00)

Let f ∈ K[x] be a polynomial of degree n ≥ 5 with Galois group containing An. Then
Jf has trivial endomorphism ring.

For a rough outline of the proof, we’ll need the following properties of End(A) :

End(A) is a free Z-module of rank < 4g2.

GK acts on End(A) by conjugation.

End(A)⊗ Z/2Z may be viewed as a subalgebra of End(A[2]).
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What can we say for smaller Galois groups?

Zarhin has done a lot of work on this for large insoluble Galois groups. For example, we
have the following :

Theorem (Elkin, Zarhin ’06,’08)

Suppose n = q + 1, where q ≥ 5 is a prime power congruent to ±3 or 7 modulo 8.
Suppose that f(x) ∈ K[x] is irreducible, has degree n and Gal(f) ∼= PSL2(Fq). Then
one of the following holds :

1 End0(Jf ) = Q or a quadratic field.

2 q ≡ 3 mod 4 and End0(Jf ) ∼= Mg(Q(
√
−q)).
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A result of Lombardo

Theorem (Lombardo ’19)

Let f ∈ K[x] be an irreducible degree 5 polynomial. Then End0(Jf ) is a division
algebra.
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Improvements in genus 2

Theorem (G. ’21)

Let f(x) ∈ K[x] be a polynomial of degree 5 or 6, with Gal(f) containing an element
of order 5. Then one of the following holds :

1 End(Jf ) ∼= Z.

2 End(Jf ) ∼= Z
[
1+r

√
D

2

]
, where D ≡ 5 mod 8, D > 0 and 2 ∤ r.

3 End(Jf ) ∼= R, where R is a 2-maximal order in a degree 4 CM field, which is
totally inert at 2.

Remark
Specifying Gal(f), we can give more information on End(Jf ).
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Higher genus

Theorem (G.’21)

Let A/K be an abelian variety of dimension g, with Gal(K(A[ℓ]/K) containing an
element of prime order p = 2g + 1, and g satisfying some additional conditions.
Then one of the following holds :

1 End0(A) is a number field, with restrictions on the primes above ℓ ;

2 End0(A) ∼= Ma(F ) where F ⊊ Q(ζp) is a CM field and a = 2g
[F :Q]

.

Satisfied by g = 1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, . . .
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Restrictions on the endomorphism field

Definition (Endomorphism field)

Let A/K be an abelian variety of dimension g. Denote by L/K the minimal extension
over which all endomorphisms of A are defined.
E.g. E : y2 = x3 − 2 has g = 1 and L = Q(ζ3).

Theorem (G.’21)

Suppose p = 2g + 1 is a prime divisor of [L : K]. Then End0(A) ∼= Ma(F ) where
F ⊊ Q(ζp) is a CM field and a = 2g

[F :Q]
.
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Sketch of the proof

Proof sketch

1 First prove A ∼ Bn over K̄ for some absolutely simple abelian variety B and an
integer n > 1.

2 Then observe that Gal(L/K) acts faithfully on End0(Bn) ∼= Mn(D) by
automorphisms, where D ∼= End0(B) is a finite dimensional division algebra
(over Q) satisfying [D : Q]n ≤ 2g = p− 1.

3 The Skolem-Noether Theorem then tells us we have a faithful representation

ρ : Gal(L/K) → PGLn(D).

4 This restricts D to be a subfield of Q(ζp) and [D : Q]n = p− 1. Which in turn
implies B has CM by a proper subfield of Q(ζp).
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What do the examples say?

Example

Jacobians with trivial endomorphism rings are quite common, so let’s see some non
trivial examples.

Gal(f) End(Jf ) f(x)

F5 Z[ 1+
√
5

2
] x5 + 10x3 + 20x+ 5

F5 Z[ζ5] x5 − 2

D5 Z[ 1+
√
13

2
] x5 − 19x4 + 107x3 + 95x2 + 88x− 16

F5 R 52x5 + 104x4 + 104x3 + 52x2 + 12x+ 1

where R is the maximal order of the CM number field with defining polynomial
x4 + x3 + 2x2 − 4x+ 3. We note that this field is cyclic, ramified only at 13, and 2
generates a maximal ideal.

Note also, when Gal(f) ∼= F5 and Jf is of CM type, End0(Jf ) is isomorphic to the
unique degree 4 extension of Q contained in Q(f).
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Missing examples

Example

For A/Q of dimension two and Gal(Q(A[2])/Q) ⊇ C5 soluble, we have the following
table :

Z RM CM
F5 ✓ ✓ ✓
D5 ✓ ✓ ?
C5 ✓ ? ?

Ruling out the CM cases

Suppose A has CM. Then CM theory tells us that Gal(L/Q) ∼= C4.
We now look to understand L ∩ Q(A[2]).
A theorem of Silverberg tells us that L ⊆ Q(A[m]) for m ≥ 3.
This rules out the C5 case.
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A specialisation of Silverberg’s theorem for A[2]

The D5 CM case is ruled out by the following :

Theorem (G.’22)

Suppose E = End0(A) is a (finite) Galois extension of Q and L ⊈ K(A[2]). The
following hold :

Gal(E/Q) has a non-trivial normal elementary abelian 2-subgroup ;

if End(A) is 2-maximal in E, then 2 is wildly ramified in E/Q.

In particular, if E/Q is Galois, End(A) is a 2-maximal order and 2 is not wildly ramified,
then L ⊆ K(A[2]).

Corollary (G.’22)

Let A : y2 = f(x) be an elliptic curve defined over a number field with a real
embedding. If Gal(f) ∼= C3, then End(A) ∼= Z.

Example (Silverman II)

The condition that End(A) is 2-maximal cannot be removed. Indeed, the elliptic curve
y2 = (x+ 2)(x2 − 2x− 11) has CM by Z[

√
−3] and its 2-torsion field is Q(

√
3).

Likewise y2 = x3 − x = x(x− 1)(x+ 1) has CM by Z[i] and shows we can’t remove
the wild ramification condition.
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Theorem (G.’22)

Let A/Q be an abelian variety of dimension g ≥ 1 with p = 2g + 1 prime. Suppose
Gal(Q(A[2])/Q) ∼= Cp. Then either

End0(A) ⊊ Q(ζp) ; or

p ∈ {7, 11, 19, 43, 67, 163} and End0(A) ∼= Mg(Q(
√
−p)).

In particular there are only finitely many possibilities for End0(A).

Corollary (G.’22)

Let A/Q be an abelian surface. Suppose Gal(Q(A[2])/Q) ∼= C5. Then either
End(A) = Z or End0Q(A) = End0(A) = Q(

√
5).

Example (Wilson ’00)

For f(x) = x(x5 − 4x4 +2x3 +5x2 − 2x− 1) has EndQ(Jf ) = End(Jf ) ∼= Z
[
1+

√
5

2

]
and Gal(f) ∼= C5.
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Sketch of the proof

Let E = End0Q(A). Recall Gal(Q(A[2])/Q) ∼= Cp.

By Class Field Theory Q(A[2])/Q is ramified at some odd prime q (for example by
Kronecker-Weber and [Q(ζ2n ) : Q] = 2n−1).

Néron-Ogg-Shafarevich tells us the image of Iq on Tℓ(A) for any ℓ contains an
element of order p.

Take a suitable ℓ satisfying ⟨ℓ⟩ = Z/pZ∗ and apply our earlier theorem.

We find E is a field.

E ⊗ Qℓ =
∏

λ|ℓ Eλ induces a GQ-equivariant splitting Vℓ =
∏

λ|ℓ Vλ.

Each Vλ has Eλ dimension 2g
[E:Q]

.

For λ outside a finite set, consider the action of Iq on Vλ, and take the trace of our
element of order p.

This gives [Q(ζp) ∩ E : Q] = [E : Q] and hence E ⊆ Q(ζp).

The rest follows from a close study of the endomorphism field L/Q.
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Thanks for listening !
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