Restrictions on endomorphism algebras of abelian varieties

Pip Goodman

27th April 2022

Why might we expect restrictions on End(A) from the G_K -modules $A[\ell]$?

Theorem (Faltings' Isogeny Theorem)

The natural map

 $\operatorname{End}_K(A) \otimes \mathbb{Z}_\ell \to \operatorname{End}(T_\ell(A))^{G_K}$

is an isomorphism.

Thus given the action of G_K on $A[\ell]$ one should not expect to say any more than $\operatorname{End}_K(A) \otimes \mathbb{Z}_{\ell}$. In fact, in general, $A[\ell]$ doesn't tell us much about $\operatorname{End}(A)$.

Example

1
$$f(x) = (x+1)(x^4 + x^3 + x^2 + x + 1)$$
, has $\operatorname{End}^0(J_f) \cong \mathbb{Q}$.
2 $f(x) = x(x^4 + x^3 + x^2 + x + 1)$, has $\operatorname{End}^0(J_f) \cong \mathbb{Q} \times \mathbb{Q}$.
3 $f(x) = (x-1)(x^4 + x^3 + x^2 + x + 1)$, has $\operatorname{End}^0(J_f) \cong \mathbb{Q}(\zeta_5)$

Why might we expect restrictions on End(A) from the G_K -modules $A[\ell]$?

Theorem (Faltings' Isogeny Theorem) The natural map $\operatorname{End}_K(A)\otimes \mathbb{Z}_\ell \to \operatorname{End}(T_\ell(A))^{G_K}$

is an isomorphism.

Thus given the action of G_K on $A[\ell]$ one should not expect to say any more than $\operatorname{End}_K(A) \otimes \mathbb{Z}_{\ell}$. In fact, in general, $A[\ell]$ doesn't tell us much about $\operatorname{End}(A)$.

Example

$$\begin{array}{l} \blacksquare \ f(x) = (x+1)(x^4+x^3+x^2+x+1), \mbox{ has } {\rm End}^0(J_f) \cong \mathbb{Q}. \\ \hline \\ \blacksquare \ f(x) = x(x^4+x^3+x^2+x+1), \mbox{ has } {\rm End}^0(J_f) \cong \mathbb{Q} \times \mathbb{Q}. \\ \hline \\ \blacksquare \ f(x) = (x-1)(x^4+x^3+x^2+x+1), \mbox{ has } {\rm End}^0(J_f) \cong \mathbb{Q}(\zeta_5) \end{array}$$

Why might we expect restrictions on End(A) from the G_K -modules $A[\ell]$?

Theorem (Faltings' Isogeny Theorem)

The natural map

$$\operatorname{End}_K(A) \otimes \mathbb{Z}_\ell \to \operatorname{End}(T_\ell(A))^{G_K}$$

is an isomorphism.

Thus given the action of G_K on $A[\ell]$ one should not expect to say any more than $\operatorname{End}_K(A) \otimes \mathbb{Z}_{\ell}$. In fact, in general, $A[\ell]$ doesn't tell us much about $\operatorname{End}(A)$.

Example

$$f(x) = (x+1)(x^4 + x^3 + x^2 + x + 1), \text{ has } \operatorname{End}^0(J_f) \cong \mathbb{Q}.$$

$$f(x) = x(x^4 + x^3 + x^2 + x + 1), \text{ has } \operatorname{End}^0(J_f) \cong \mathbb{Q} \times \mathbb{Q}.$$

$$f(x) = (x-1)(x^4 + x^3 + x^2 + x + 1)$$
, has $\operatorname{End}^0(J_f) \cong \mathbb{Q}(\zeta_5)$.

Theorem (Serre '72)

Let E/K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes ℓ , we have $\operatorname{Gal}(K(E[\ell])/K) \cong \operatorname{GL}_2(\mathbb{F}_{\ell})$.

Theorem (Hall '08)

Let $f(x) \in K[x]$ be a squareefree polynomial of degree 2g + 1. Suppose $\operatorname{End}(J_f) \cong \mathbb{Z}$, and modulo some prime q, f has a root of multiplicity two. Then for all but finitely many primes ℓ , we have $\operatorname{Gal}(K(J_f[\ell])/K) \cong \operatorname{GSp}_{2q}(\mathbb{F}_{\ell})$.

Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \ge 5$ with Galois group containing A_n . Then J_f has trivial endomorphism ring.

Remark

To prove this result, it suffices to prove it for A_n .

Theorem (Serre '72)

Let E/K be an elliptic curve with $\operatorname{End}(E) \cong \mathbb{Z}$. Then for all but finitely many primes ℓ , we have $\operatorname{Gal}(K(E[\ell])/K) \cong \operatorname{GL}_2(\mathbb{F}_{\ell})$.

Theorem (Hall '08)

Let $f(x) \in K[x]$ be a squareefree polynomial of degree 2g + 1. Suppose $\operatorname{End}(J_f) \cong \mathbb{Z}$, and modulo some prime q, f has a root of multiplicity two. Then for all but finitely many primes ℓ , we have $\operatorname{Gal}(K(J_f[\ell])/K) \cong \operatorname{GSp}_{2q}(\mathbb{F}_{\ell})$.

Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \ge 5$ with Galois group containing A_n . Then J_f has trivial endomorphism ring.

Remark

To prove this result, it suffices to prove it for A_n .

Theorem (Zarhin '00)

Let $f \in K[x]$ be a polynomial of degree $n \ge 5$ with Galois group containing A_n . Then J_f has trivial endomorphism ring.

For a rough outline of the proof, we'll need the following properties of End(A):

- End(A) is a free \mathbb{Z} -module of rank $< 4g^2$.
- G_K acts on End(A) by conjugation.
- $\operatorname{End}(A) \otimes \mathbb{Z}/2\mathbb{Z}$ may be viewed as a subalgebra of $\operatorname{End}(A[2])$.

Zarhin has done a lot of work on this for large insoluble Galois groups. For example, we have the following :

Theorem (Elkin, Zarhin '06,'08)

Suppose n = q + 1, where $q \ge 5$ is a prime power congruent to ± 3 or 7 modulo 8. Suppose that $f(x) \in K[x]$ is irreducible, has degree n and $Gal(f) \cong PSL_2(\mathbb{F}_q)$. Then one of the following holds :

- 1 End⁰(J_f) = \mathbb{Q} or a quadratic field.
- 2 $q \equiv 3 \mod 4$ and $\operatorname{End}^0(J_f) \cong M_g(\mathbb{Q}(\sqrt{-q})).$

Theorem (Lombardo '19)

Let $f \in K[x]$ be an irreducible degree 5 polynomial. Then $\operatorname{End}^0(J_f)$ is a division algebra.

Theorem (G. '21)

Let $f(x) \in K[x]$ be a polynomial of degree 5 or 6, with Gal(f) containing an element of order 5. Then one of the following holds :

 $1 \quad \text{End}(J_f) \cong \mathbb{Z}.$

2 End
$$(J_f) \cong \mathbb{Z}\left[\frac{1+r\sqrt{D}}{2}\right]$$
, where $D \equiv 5 \mod 8$, $D > 0$ and $2 \nmid r$.

2 End $(J_f) \cong R$, where R is a 2-maximal order in a degree 4 CM field, which is totally inert at 2.

Remark

Specifying Gal(f), we can give more information on $End(J_f)$.

Theorem (G.'21)

Let A/K be an abelian variety of dimension g, with $\operatorname{Gal}(K(A[\ell]/K)$ containing an element of prime order p = 2g + 1, and g satisfying some additional conditions. Then one of the following holds :

I End⁰(A) is a number field, with restrictions on the primes above ℓ ;

2 End⁰(A) \cong $M_a(F)$ where $F \subsetneq \mathbb{Q}(\zeta_p)$ is a CM field and $a = \frac{2g}{[F:\mathbb{O}]}$.

Satisfied by $g = 1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, \ldots$

Definition (Endomorphism field)

Let A/K be an abelian variety of dimension g. Denote by L/K the minimal extension over which all endomorphisms of A are defined. E.g. $E: y^2 = x^3 - 2$ has g = 1 and $L = \mathbb{Q}(\zeta_3)$.

Theorem (G.'21)

Suppose p = 2g + 1 is a prime divisor of [L : K]. Then $\operatorname{End}^0(A) \cong M_a(F)$ where $F \subsetneq \mathbb{Q}(\zeta_p)$ is a CM field and $a = \frac{2g}{[F : \mathbb{Q}]}$.

Proof sketch

- **I** First prove $A \sim B^n$ over \bar{K} for some absolutely simple abelian variety B and an integer n > 1.
- **2** Then observe that $\operatorname{Gal}(L/K)$ acts faithfully on $\operatorname{End}^0(B^n) \cong M_n(D)$ by automorphisms, where $D \cong \operatorname{End}^0(B)$ is a finite dimensional division algebra (over \mathbb{Q}) satisfying $[D:\mathbb{Q}]n \leq 2g = p 1$.
- The Skolem-Noether Theorem then tells us we have a faithful representation

 $\rho : \operatorname{Gal}(L/K) \to \operatorname{PGL}_n(D).$

This restricts *D* to be a subfield of $\mathbb{Q}(\zeta_p)$ and $[D:\mathbb{Q}]n = p - 1$. Which in turn implies *B* has CM by a proper subfield of $\mathbb{Q}(\zeta_p)$.

Jacobians with trivial endomorphism rings are quite common, so let's see some non trivial examples.

$\operatorname{Gal}(f)$	$\operatorname{End}(J_f)$	f(x)
F_5	$\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$	$x^5 + 10x^3 + 20x + 5$
F_5	$\mathbb{Z}[ar{\zeta_5}]$	$x^{5}-2$

where R is the maximal order of the CM number field with defining polynomial $x^4 + x^3 + 2x^2 - 4x + 3$. We note that this field is cyclic, ramified only at 13, and 2 generates a maximal ideal.

Note also, when $\operatorname{Gal}(f) \cong F_5$ and J_f is of CM type, $\operatorname{End}^0(J_f)$ is isomorphic to the unique degree 4 extension of \mathbb{Q} contained in $\mathbb{Q}(f)$.

Jacobians with trivial endomorphism rings are quite common, so let's see some non trivial examples.

$\operatorname{Gal}(f)$	$\operatorname{End}(J_f)$	f(x)
F_5	$\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$	$x^5 + 10x^3 + 20x + 5$
F_5	$\mathbb{Z}[ar{\zeta_5}]$	$x^5 - 2$
D_5	$\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$	$x^5 - 19x^4 + 107x^3 + 95x^2 + 88x - 16$
F_5	Ŕ	$52x^5 + 104x^4 + 104x^3 + 52x^2 + 12x + 1$

where R is the maximal order of the CM number field with defining polynomial $x^4 + x^3 + 2x^2 - 4x + 3$. We note that this field is cyclic, ramified only at 13, and 2 generates a maximal ideal.

Note also, when $\operatorname{Gal}(f) \cong F_5$ and J_f is of CM type, $\operatorname{End}^0(J_f)$ is isomorphic to the unique degree 4 extension of \mathbb{Q} contained in $\mathbb{Q}(f)$.

For A/\mathbb{Q} of dimension two and ${\rm Gal}(\mathbb{Q}(A[2])/\mathbb{Q})\supseteq C_5$ soluble, we have the following table :

	Z	RM	CM
F_5	\checkmark	\checkmark	\checkmark
D_5	\checkmark	\checkmark	?
C_5	\checkmark	?	?

For A/\mathbb{Q} of dimension two and ${\rm Gal}(\mathbb{Q}(A[2])/\mathbb{Q})\supseteq C_5$ soluble, we have the following table :

	Z	RM	CM
F_5	\checkmark	\checkmark	\checkmark
D_5	\checkmark	\checkmark	?
C_5	\checkmark	?	?

Ruling out the CM cases

Suppose A has CM. Then CM theory tells us that $\operatorname{Gal}(L/\mathbb{Q}) \cong C_4$. We now look to understand $L \cap \mathbb{Q}(A[2])$. A theorem of Silverberg tells us that $L \subseteq \mathbb{Q}(A[m])$ for $m \geq 3$. This rules out the C_5 case.

A specialisation of Silverberg's theorem for A[2]

The D_5 CM case is ruled out by the following :

Theorem (G.'22)

Suppose $E = \text{End}^0(A)$ is a (finite) Galois extension of \mathbb{Q} and $L \nsubseteq K(A[2])$. The following hold :

- Gal (E/\mathbb{Q}) has a non-trivial normal elementary abelian 2-subgroup;
- if End(A) is 2-maximal in E, then 2 is wildly ramified in E/\mathbb{Q} .

In particular, if E/\mathbb{Q} is Galois, End(A) is a 2-maximal order and 2 is not wildly ramified, then $L \subseteq K(A[2])$.

Corollary (G.'22)

Let $A: y^2 = f(x)$ be an elliptic curve defined over a number field with a real embedding. If $\operatorname{Gal}(f) \cong C_3$, then $\operatorname{End}(A) \cong \mathbb{Z}$.

Example (Silverman II)

The condition that $\operatorname{End}(A)$ is 2-maximal cannot be removed. Indeed, the elliptic curve $y^2 = (x+2)(x^2-2x-11)$ has CM by $\mathbb{Z}[\sqrt{-3}]$ and its 2-torsion field is $\mathbb{Q}(\sqrt{3})$. Likewise $y^2 = x^3 - x = x(x-1)(x+1)$ has CM by $\mathbb{Z}[i]$ and shows we can't remove the wild ramification condition.

Pip Goodman

Theorem (G.'22)

Let A/\mathbb{Q} be an abelian variety of dimension $g \ge 1$ with p = 2g + 1 prime. Suppose $Gal(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_p$. Then either

• End⁰(A) $\subsetneq \mathbb{Q}(\zeta_p)$; or

■ $p \in \{7, 11, 19, 43, 67, 163\}$ and $\operatorname{End}^0(A) \cong M_g(\mathbb{Q}(\sqrt{-p})).$

In particular there are only finitely many possibilities for $End^0(A)$.

Corollary (G.'22)

Let A/\mathbb{Q} be an abelian surface. Suppose $\operatorname{Gal}(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_5$. Then either $\operatorname{End}(A) = \mathbb{Z}$ or $\operatorname{End}_{\mathbb{Q}}^0(A) = \operatorname{End}^0(A) = \mathbb{Q}(\sqrt{5})$.

Theorem (G.'22)

Let A/\mathbb{Q} be an abelian variety of dimension $g \ge 1$ with p = 2g + 1 prime. Suppose $Gal(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_p$. Then either

- End⁰(A) $\subsetneq \mathbb{Q}(\zeta_p)$; or
- $p \in \{7, 11, 19, 43, 67, 163\}$ and $\operatorname{End}^0(A) \cong M_g(\mathbb{Q}(\sqrt{-p})).$

In particular there are only finitely many possibilities for $End^{0}(A)$.

Corollary (G.'22)

Let A/\mathbb{Q} be an abelian surface. Suppose $\operatorname{Gal}(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_5$. Then either $\operatorname{End}(A) = \mathbb{Z}$ or $\operatorname{End}_{\mathbb{Q}}^0(A) = \operatorname{End}^0(A) = \mathbb{Q}(\sqrt{5})$.

Example (Wilson '00)

For $f(x) = x(x^5 - 4x^4 + 2x^3 + 5x^2 - 2x - 1)$ has $\operatorname{End}_{\mathbb{Q}}(J_f) = \operatorname{End}(J_f) \cong \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ and $\operatorname{Gal}(f) \cong C_5$.

Sketch of the proof

Let $E = \operatorname{End}_{\mathbb{Q}}^{0}(A)$. Recall $\operatorname{Gal}(\mathbb{Q}(A[2])/\mathbb{Q}) \cong C_{p}$.

- By Class Field Theory $\mathbb{Q}(A[2])/\mathbb{Q}$ is ramified at some odd prime q (for example by Kronecker-Weber and $[\mathbb{Q}(\zeta_{2^n}):\mathbb{Q}] = 2^{n-1}$).
- Néron-Ogg-Shafarevich tells us the image of I_q on $T_{\ell}(A)$ for any ℓ contains an element of order p.
- Take a suitable ℓ satisfying $\langle \ell \rangle = \mathbb{Z}/p\mathbb{Z}^*$ and apply our earlier theorem.
- We find E is a field.
- $E \otimes \mathbb{Q}_{\ell} = \prod_{\lambda \mid \ell} E_{\lambda}$ induces a $G_{\mathbb{Q}}$ -equivariant splitting $V_{\ell} = \prod_{\lambda \mid \ell} V_{\lambda}$.
- Each V_{λ} has E_{λ} dimension $\frac{2g}{[E:\mathbb{Q}]}$.
- For λ outside a finite set, consider the action of I_q on V_{λ} , and take the trace of our element of order p.
- This gives $[\mathbb{Q}(\zeta_p) \cap E : \mathbb{Q}] = [E : \mathbb{Q}]$ and hence $E \subseteq \mathbb{Q}(\zeta_p)$.
- The rest follows from a close study of the endomorphism field L/\mathbb{Q} .

Thanks for listening!