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Cubic points on X0(65)

David Zureick-Brown (DZB) and his collaborators had recently
finished proving the analogue of Mazur’s Theorem on torsion
subgroups for elliptic curves over cubic fields.

Due to previous work, they only had to compute the cubic points on
the modular curves X1(N ) for finitely many N , all of which had
finitely many such points.

For X1(65), they had tried using the natural map X1(65) → X0(65) to
reduce the question to computing cubic points on X0(65). But they
were unable to do so!
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How do we deal with cubic points?

We study points on X (d) the d-th symmetric power of the curve X .
Points on X (d) are unordered d-tuples P1 + . . .+ Pd with Pi ∈ X .

Example
X (2)(Q) = {P + Q|P,Q ∈ X(Q)} ∪ {P + Pσ|P ∈ X(K ), [K : Q] = 2}

There could be infinitely many points on X (d)(Q) regardless of X ’s
genus!

A hyperelliptic curve X/Q has a rational degree two map ρ : X → P1.
Thus by pulling back rational points, we get infinitely many points in
X (2)(Q).

For X : y2 = f (x), we have {(x, y) + (x,−y)|x ∈ Q} ⊆ X (2)(Q).

If all but finitely many rational points on X (d) (X/Q not necessarily
hyperelliptic) arise as the pullbacks of a degree d map, then in
principle, the degree d points on X may be computed using Siksek’s
symmetric Chabauty method.
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What’s the problem with X (3)
0 (65)(Q)?

Note: if X (d0)(Q) is infinite and X(Q) ̸= ∅, then X (d)(Q) is infinite for
d ≥ d0. Furthermore, for d > d0, there are infinitely many rational
points on X (d)(Q) which are not pullbacks.

This is the case for X0(65), which has a rational degree two map to a
rank one elliptic curve.

In particular, Siksek’s methods cannot be applied to X (3)
0 (65)(Q).

For this reason, DZB asked: can one determine the finitely many
cubic points on X0(65) despite its infinitely many quadratic points?
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Generalised symmetric Chabauty

Together with Josha Box and Stevan Gajović, we developed a
generalised symmetric Chabauty method.

This allowed us to answer DZB’s question affirmatively. Moreover, we
prove the following:

Theorem (Box, Gajović, G. ’22)
The set of cubic points for each of the curves

X0(53), X0(57), X0(61), X0(65), X0(67) and X0(73)

is finite and known. The quartic points on X0(65) form an infinite set.
We describe an infinite family and list a finite set of remaining points.

Our new method played a crucial role in Box’s result:

Theorem (Box ’22)
Let K be a totally real quartic field, not containing

√
5. Then any

elliptic curve E/K is modular.
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Symmetric Chabauty

Let p be a prime of good reduction for our curve X . To determine
X (d)(Q) it suffices to determine each of its residue discs.

Consider Q̃ ∈ X (d)(Fp) and its inverse image D(Q̃) ⊆ X (d)(Qp) under
the reduction map.

Fixing an Abel-Jacobi map ι : X (d) → Jac(X), we obtain a
commutative diagram:

D(Q̃)

D(Q̃) ∩ X (d)(Q) Jac(X)(Q)

Jac(X)(Qp)

ι

ι

In classical Chabauty, we look to determine ι(D(Q̃)) ∩ Jac(X)(Q).

The problem is that even if the analogous Chabauty condition
rX < gX − (d − 1) is satisfied, this set might not be finite.
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Non finiteness of ι(D(Q̃)) ∩ Jac(X)(Q)

Recall: maps ρ : X → C can give rise to infinitely many points in
X (d)(Q).

If Q = P + ρ∗(Q) ∈ D(Q̃) with P ∈ X(Q), Q ∈ C (Q), then the family

P + ρ∗C (Q) ⊆ X (d)(Q)

often leads to infinitely many points in D(Q̃).

To remedy this, we need to ‘kill’ the pullbacks. There is an abelian
variety A such that J (X) ∼ J (C )× A. Let πA : J (X) → A be the
quotient map. The image

πA(ι(P + ρ∗C (Q)))

is now a single point on A. Hence we should try determining
ι(D(Q̃)) ∩ A(X)(Q), when rX − rC < gX − gC − (d − 1) is satisfied.

In general, this allows to deduce information about
D := D(Q̃) ∩ X (d)(Q) relative to C (Q).

For example, here we find conditions to guarantee D ⊆ P + ρ∗C (Q). 6



What could possibly go wrong?

In practice, we need to use information from several primes. The
relevant technique here is the Mordell–Weil sieve.

There are algorithms for computing MW groups of curves with genus
at most two. But our examples have genus 4 or 5.

Taking pullbacks, we can compute subgroups with index dividing a
known quantity (the degree of our maps) and usually this is enough.
But it wasn’t for the quartic points on X0(65).

So, we proved the following:

Theorem (Box, Gajović, G. ’22)
J0(65)(Q) is generated by ρ∗J+

0 (65)(Q) and J0(65)(Q)tors.

(Where J+
0 (65) is the elliptic curve that was causing problems

earlier.)

7



Computing the full Mordell–Weil group

Suppose for a second J (X)(Q) is torsion. We can try using

J (X)(Q) ↪→ J (X)(Fp)

for several primes of good reduction to bound J (X)(Q).

But there’s no guarantee this bound will be sharp.

So, instead it’s reasonable to compute J (X)(K )tors for some
extension K/Q and then take Galois invariants.

Suppose J (X)(Q) has positive rank, with G ⊆ J (X)(Q) index
dividing, say, two.

We then check if D ∈ G is a double in J (X)(Q) by either

• reducing mod p; or
• computing a preimage 1

2 D ∈ J (X)(K ) and looking for rational
points in 1

2 D + J (X)(K )[2].
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What else could go wrong?

Our Chabauty conditions are given in terms of (certain) differentials
of X . In fact, they depend on the rank of a matrix constructed from
the first few coefficients of these differentials.

(Slightly) more precisely
Given Q ∈ Xd(Q) we associate to it a matrix AQ.

We also assume that we know something about Q.

For example Q ∈ ρ∗C d/e(Q) for some quotient ρ : X → C of degree
e, or perhaps Q ∈ P + ρ∗C (Q) for some P ∈ X (d−e)(Q).

From this we cook up a rank condition on AQ, which if satisfied
means all points in the residue disc of Q have the same form.

Sometimes these rank conditions are not satisfied. But this is usually
for a “good reason”.
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The problem with X0(73)

Example
Let c0, c∞ denote the cusps on X0(73). We have w73(c0) = c∞, thus
c0 + c∞ ∈ ρ∗X+

0 (73)(Q), i.e., their sum is a pullback.

We expect 3c0, 3c∞ ∈ X0(73)(3)(Q) to be alone in their residue
classes, and thus their corresponding matrices A0,A∞ would have
to have full rank (= 3 here) if we want to apply our earlier criteria.

However, since their sum is a pullback, these matrices satisfy
A0 = −A∞.

The matrix corresponding to 3c0 + 3c∞ is given by A = (A0|A∞) and
thus has rank rk(A0).

However, our theorem tells us that if the reduction of A modulo p
had rank = 3, then the residue class of 3c0 + 3c∞ would be
contained in ρ∗(X0(73)(3)(Q)).

However, this is not the case as one may verify by computing the
Riemann-Roch space L(3c0 + 3c∞). 10



Thanks for listening!

11


